Quantcast
Channel: Manfaat Sehat
Viewing all articles
Browse latest Browse all 61

Arduino Ultrasonic sensor pings distances (HC-SR04)

$
0
0

An Ultrasonic Distance Sensor such as the HC-SR04 is an easy module to add to an Arduino Uno or other Arduino board.  In this example video we see different distances lighting up different LEDs:


This HC-SR04 board (Amazon.com) is similar to the PING)))) ultrasonic sensor.  This was easy to use, plug the pins into:

  • VCC = 5 volt rail power
  • trig = Digital Out
  • echo = Digital In
  • GND = Negative (ground) rail

The HC-SR04 seems to be rather accurate at close range (5-30 inches,  12-75cm) but after about 70 inches (~175cm) it really loses the ability to 'see' my hand or my body.  It does better with larger objects such as a wall or a submarine.  Clicking on the Serial Monitor icon on the top-right of the Arduino software shows us the distances that the HC-SR04 is detecting.

Code below was adapted from the built-in Arduino eamples, by David A. Mellis and Tom Igoe:




 /* HC-SR04 Distance Sensor
 
   This sketch reads an HC-SR04
ultrasonic rangefinder and returns the
   distance to the closest object in range. To do this, it sends a pulse
   to the sensor to initiate a reading, then listens for a pulse
   to return.  The length of the returning pulse is proportional to
   the distance of the object from the sensor.
   
   The circuit:
    * +V connection of the HC-SR04
attached to +5V
    * trig connection of the HC-SR04 attached to Digital 3
    * echo connection of the HC-SR04 attached to Digital 4 
    * GND connection of the HC-SR04 attached to ground

    * Green LED is attached with a 560 Ohm resistor to pin 11 
    * Red LED 1 is attached with a 560 Ohm resistor to pin 10
    * Red LED 2 is attached with a 560 Ohm resistor to pin 9

 
   Code created 3 Nov 2008
   by David A. Mellis
   modified 30 Aug 2011
   by Tom Igoe
   Modified 2012 08 14 lefty.crupps, 
   http://gnuski.blogspot.com/2012/08/arduino-ultrasonic-sensor-pings.html

   This example code is in the public domain.

 */


// Define our variables (int)

// Distances for the various levels of Closeness (inches)

int l3 = 20; // Level 3 is very close, 20 inches or closer
int l2 = 40;// Level 2 is close
int l1 = 42; // Level 1 is nearby
 
int pingPin = 3; // Out trig
int echoPin = 4; // In echo

int grPin = 11;  //green LED
int r1Pin = 10;  //red1 LED
int r2Pin = 9;   //red2 LED


void setup() {
  // initialize serial communication:
  Serial.begin(9600);
  pinMode(grPin, OUTPUT); //sets the Green led pin to output
  pinMode(r1Pin, OUTPUT); //sets the Red1 led pin to output
  pinMode(r2Pin, OUTPUT); //sets the Red2 led pin to output
}


// Function to turn off all LEDs

 void off(){
 
digitalWrite(r1Pin, LOW);
digitalWrite(r2Pin, LOW);
digitalWrite(grPin, LOW);
  }


void loop()
{
  // establish variables for duration of the ping,
  // and the distance result in inches and centimeters:
  //  long duration, inches, cm;
long duration, inches, cm;
off();

  // The HC-SR04
is triggered by a HIGH pulse of 2 or more microseconds.
  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
  delayMicroseconds(2);
  digitalWrite(pingPin, HIGH);
  delayMicroseconds(5);
  digitalWrite(pingPin, LOW);

  // The echoPin reads the returning Ultrasonic Ping: a HIGH
  // pulse whose duration is the time (in microseconds) from the sending
  // of the ping to the reception of its echo off of an object.
  pinMode(echoPin, INPUT);
  duration = pulseIn(echoPin, HIGH);
 
 

 // convert the time into a distance

  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);
 
  Serial.print(inches);
  Serial.print("in, ");
  Serial.print(cm);
  Serial.print("cm");
  Serial.println();
 

digitalWrite(r1Pin, LOW);
digitalWrite(r2Pin, LOW);
digitalWrite(grPin, LOW);
  

if (inches < 1500 && inches > l2)
  {
    digitalWrite(grPin, HIGH);
    delay(500);
    digitalWrite(grPin, LOW);
    delay(1500);
  }
else off();

     if (inches < l2 && inches > l3)
  {
    digitalWrite(r1Pin, HIGH);
    delay(500);
    digitalWrite(r1Pin, LOW);
    delay(1500);
  }
 else off();


     if (inches < l3)
  {
    digitalWrite(r2Pin, HIGH);
    delay(150);
    digitalWrite(grPin, LOW);
    delay(150);
    digitalWrite(r2Pin, HIGH);
    delay(150);
    digitalWrite(grPin, LOW);
    delay(150);
  }
  else off();
 
  off();
  delay(100);

}

long microsecondsToInches(long microseconds)
{
  // According to Parallax's datasheet for the PING))), there are
  // 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
  // second).  This gives the distance travelled by the ping, outbound
  // and return, so we divide by 2 to get the distance of the obstacle.
  // See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf
  // We'll use the same info for the HC-SR04
  return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds)
{
  // The speed of sound is 340 m/s or 29 microseconds per centimeter.
  // The ping travels out and back, so to find the distance of the
  // object we take half of the distance travelled.
  // We'll use the same info for the HC-SR04 
  return microseconds / 29 / 2;
}


Viewing all articles
Browse latest Browse all 61

Trending Articles